\documentclass{article}
\usepackage{amsmath}
\newcommand{\rr}{\mathbf{r}}
\begin{document}
{\bf Quiz \#9; Tuesday, date: 03/20/2018}
{\bf MATH 53 Multivariable Calculus with Stankova}
{\bf Section \#114; time: 2 -- 3:30 pm}
{\bf GSI name: Kenneth Hung}
{\bf Student name:}
\vspace*{0.25in}
\begin{enumerate}
\item Calculate the iterated integral.
\[
\int_0^1 \int_0^1 (x + y)^3 \,dx \,dy
\]
\item {\em True / False?} When we are are finding the maxima and minima of a nice function with constraint $x^2 + y^2 = 1$, we will always find an absolute maximum and an absolute minimum.
\item {\em True / False?} The solid under the graph of $z = 8 - x^2 - y^2$ and over the region $[-2, 2] \times [-2, 2]$ can be thought of as the solid when $z = 8 - x^2$ is revolved about the $z$-axis, and can thus be computed without using a double integral.
\end{enumerate}
\end{document}