Worksheet #4; date: 09/10/2018 MATH 55 Discrete Mathematics

- 1. (*Remark*) You are going to see \subseteq mixed with \subset . Do not be surprised in the future if you see \subset to mean subset and \subsetneq for proper subset. Notation is a mess.
- 2. What is the cardinality of $\mathcal{P}(\{a, b, c\})$?
- 3. (a) (Rosen 2.1.38) Show that $A \times B \neq B \times A$, when A and B are nonempty, unless A = B.
 - (b) Show that $A \times B \subseteq B \times A$ if and only if A = B.
- 4. (Set theory definition of integer) Suppose $S_0 = \emptyset$, and for every positive integer *i*, we define $S_i = S_{i-1} \cup \{S_{i-1}\}$.
 - (a) Write down S_1 , S_2 and S_3 .
 - (b) Is $S_1 \subseteq S_3$? If so, is $S_1 \subset S_3$?
 - (c) (*Challenging*) Show that $j \leq k$ is a necessary and sufficient condition for $S_j \subseteq S_k$.
- 5. $(Rosen \ 2.2.18c)$ Let A, B, and C be sets. Show that

$$(A-B) - C \subseteq A - C.$$

- 6. (Rosen 2.2.51) Find $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$ if for every positive integer *i*,
 - (a) $A_i = \{-i, -i+1, \dots, -1, 0, 1, \dots, i-1, i\}.$
 - (b) $A_i = \{-i, i\}.$
 - (c) $A_i = [-i, i]$, that is, the set of real numbers x with $-i \le x \le i$.
 - (d) $A_i = [i, \infty)$, that is, the set of real numbers x with $x \ge i$.
 - (e) (Extra; challenging) $A_i = (-1/i, 1/i)$.
- 7. What can we say about f and g if the graph of f is a proper subset of the graph of g?
- 8. (Rosen 2.3.15a-b) Determine whether $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is onto if
 - (a) f(m,n) = m + n.
 - (b) $f(m,n) = m^2 + n^2$.
- 9. (Rosen 2.3.74a-d) Prove or disprove each of these statements about the floor and ceiling functions.
 - (a) $\lfloor \lceil x \rceil \rfloor = \lceil x \rceil$ for all real numbers x.
 - (b) $\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor$.
 - (c) $\lceil \lfloor x/2 \rfloor / 2 \rceil = \lfloor x/4 \rceil$ for all real numbers x.